

Linking Wetlands Hydrology to Estuarine Salinity in the Everglades: Integrated Solutions to Establish Restoration Targets

G. Lynn Wingard¹ and Frank E. Marshall²

¹ U.S. Geological Survey, Reston, VA ² Cetacean Logic Foundation, New Smyrna Beach, FL

The Problem

- Restoration of the Greater Everglades Ecosystem is dependent on re-establishing historical hydrologic conditions
 - Freshwater flow through the wetlands
 - Salinity in the southern estuaries
- Theoretically-based mechanistic models of hydrology have not produced low salinities in the estuaries but . . .
 - Paleoecologic and anecdotal data indicate low salinities existed around 1900 CE
- RECOVER teams need estimates of historical flow and stage in the wetlands and salinity in the estuaries
 - Used to set empirically based targets and performance measures for restoration.

The Solution

Phase I: Paleoecology

Phase II: Linear Regression Models (LRMs) developed based on observed instrumental data from stations in the wetlands and the estuaries Phase III: Couples the simulated paleosalinity regime with the LRMs to produce estimates of flow, stage, and salinity

See Marshall et al. 2009, Est. & Coasts, v. 32, p. 37-53

Step 1: Paleosalinity estimates (eg. Taylor Creek Core)

- Molluscan assemblages are compared to a modern analog dataset
- Average salinity values from modern dataset are weighted by the abundance of species in each sample

Step 1: Paleosalinity estimates (eg. Taylor Creek Core)

≈USGS

Step 1: Paleosalinity estimates (eg. Taylor Creek Core)

≥USGS

Step 1: Paleosalinity estimates (eg. Taylor Creek Core)

- Cumulative weighted average salinity is produced for each 2-cm core segment
- Paleosalinity estimates from about 1900 CE are the Phase I Step 1 output.

Step 2: Develop paleosalinity time series at each core location

Time series derived from multiple LRMs, using the SFWMD Natural System Model for each core location.

Step 2: Develop paleosalinity time series at each core location

See Obeysekera et al., 2006, SFWMD Report

Step 2: Develop paleosalinity time series at each core location

Time series derived from multiple LRMs, using the SFWMD Natural System Model for each core location.

			NSM Salinity
	NSM/MLR	Paleosalinity	Adjustment for
	Mean Salinity	Estimate (CWP	Paleosalinity Time
Core Name	(1965-2000)	CONFID)	Series
Crocodile Point	27.6	26.5	-1.1
Rankin Lake	30.4	28.3	-2.1
	20.1	26.4	17
Russell Bank	28.1	26.4	-1./
Taylor T24	17.7	16.5	-1.5
Whipray Basin	31.8	29.5	-2.3

≈USGS

≥USGS

Phase II: Linear Regression Models

4 sets of Linear Regression Models (LRMs) developed based on modern hydrologic station data

- •Stage to salinity
- •Stage to flow
- Stage to stage
- Salinity to salinity

These models link freshwater stage and flow at locations in the Everglades wetlands to salinity in Florida Bay.

Phase III: Linking Paleo & LRMs

Phase I: NSM / MLR adjusted paleosalinity time series

Phase II: LRMs for

- Stage to salinity
- Stage to flow
- Stage to stage
- Salinity to salinity

Phase III: Couples the simulated paleosalinity regime with the LRMs to produce estimates of flow, stage, and salinity

Results – Output from Phase III

Phase III Output

- Stage: Paleo-based stage throughout freshwater marshes and mangrove transition zone (14 stations)
- Flow: Upstream paleo-based flow (Shark River, Taylor River systems)
- Flow: Downstream paleo-based creek discharges (5 creeks)
- Salinity: Paleo-based salinity throughout Florida Bay (17 stations)

Paleo-based Estimate vs. Observed

Paleo-based Estimate vs. Observed

Paleo-based Estimate vs. Observed

Results aggregated by FATHOM Basin

Summary

Three phase integrated approach applied to 5 cores has indicated the following:

- A "wetter Everglades" prior to 20th century drainage projects. Paleo-based estimates:
 - Stage in the Everglades is 0.6 to 1.2 feet higher
 - Flow at Shark River Slough at Tamiami Trail ~1500 cfs higher
 - Flow at Taylor Slough Bridge ~120 cfs higher

Summary

- Less saline estuaries prior to 20th century drainage projects. Paleo-based estimates:
 - Salinity in nearshore transition zones ~12 psu lower
 - Salinity along western margin of Florida Bay ~3 psu lower

These results are being used by the Southern Coastal Systems Sub-team of RECOVER to develop PMs and targets for salinity in the estuaries to guide restoration of the GEE.

For more information on research visit: http://sofia.usgs.gov/

